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Statistics of energy levels without time-reversal symmetry: 
Aharonov-Bohm chaotic billiards 

M V Berry and M Robnik 
H H Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 ITL, UK 

Received 5 June 1985 

Abstract. A planar domain D contains a single line of magnetic flux a. Switching on @ 
breaks time-reversal symmetry ( T )  for quantal particles with charge q moving in 0, whilst 
preserving the geometry of classical (billiard) trajectories bouncing off the boundary dD. 
If aD is such that these classical trajectories are chaotic, we predict that T breaking will 
cause the local statistics of quantal energy levels to change their universality class, from 
that of the Gaussian orthogonal ensemble (GOE) of random-matrix theory to that of the 
Gaussian unitary ensemble (GUE). In the semiclassical limit this transition is abrupt; for 
statistics involving the first N levels, CUE behaviour requires that the quantum flux 
(2 = q @ / h  >> 0.13N-''4. The special flux a = 1/2 corresponds to 'false T breaking' and for 
this case we predict GOE statistics. These predictions are confirmed by numerical computa- 
tion of spectral statistics for a classically chaotic billiard without symmetry, for which dD 
is a cubic conformal image of the unit disc. 

1. Introduction 

For a bound quantal system with time-reversal symmetry ( T ) ,  energy levels are 
determined by diagonalising a Hamiltonian matrix which is real and symmetric. When 
T is broken (for example by applying an external magnetic field) the Hamiltonian 
becomes, in general, complex, that is, fully Hermitian. Our purpose here is to show 
by means of an example that, in cases where the system has a classical counterpart 
whose trajectories are chaotic, such symmetry breaking has a dramatic effect on the 
spectrum: it changes the universality class of the local statistics of high-lying (semi- 
classical) energy levels. 

There is good reason to expect this effect. High-lying levels of classically chaotic 
systems are eigenvalues of large complicated matrices, which can be regarded as typical 
members of an appropriate ensemble as studied in random-matrix theory (Porter 1965, 
Mehta 1967). With T (or an equivalent anti-unitary symmetry (Robnik and Berry 
1985)) the Gaussian orthogonal ensemble (GOE), consisting of real symmetric matrices, 
is appropriate; without T, the Gaussian unitary ensemble (GUE), consisting of complex 
Hermitian matrices, is appropriate. Strong evidence has now accumulated for a variety 
of classically chaotic systems with T that shows that the quantal spectral statistics are 
indeed those of the CJOE (see the review by Bohigas and Giannoni (1984)). In contrast, 
energy levels in the case where T is broken have so far been studied in only one 
system: Seligman and Verbaarschot (1985) demonstrated GUE behaviour for a particle 
moving in a combination of inhomogeneous magnetic and scalar force fields. (In 
addition, GUE statistics have been found by Izraelev (1984) for the quasi-energies of 
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a chaotic quantum map and by Odlyzko (reported by Bohigas and Giannoni (1984)) 
for the imaginary parts of the zeros of Riemann’s zeta function.) 

The statistics we shall study are the level spacings distribution P( S )  and the rigidity 
A(L). P ( S )  describes fine-scale spectral structure, because it is the distribution of 
spacings of neighbouring levels (with S measured in terms of the local mean level 
spacing). An important difference between the GOE and G U E  universality classes is 
their behaviour as S + 0: GOE predicts the ‘linear level repulsion’ P a  S, whilst GUE 

predicts the ‘quadratic level repulsion’ P a  Sz (a simple explanation of this difference, 
in terms of the codimension of degeneracies of families of real and complex Hermitian 
matrices, is given by Berry 1985a). Useful approximate formulae for P ( S )  are 

The rigidity A( L )  is the local average least squares deviation of the spectral staircase 
N ( E )  for a straight line, over an energy range of L mean level spacings. Thus 

In this formula ( d ( E ) )  is the mean level density near energy E, N ( E )  is the spectral 
staircase 

m 

N ( E ) =  c @ ( E - E , )  (3) 
j =  1 

where E, are the energy levels and 0 denotes the unit step function, and ( ) denotes 
averaging (over an ensemble of spectra, or over a classically small energy range centred 
on E ) .  Rigidity was introduced by Dyson and Mehta (1963) (they called it A3(L)); it 
describes spectral structure over a range of scales. As L + 0, A( L )  + L/ 15 for all systems 
of the class we consider here. For large L, random-matrix theory predicts that A(L) 
increases logarithmically, with different constants for GOE and GUE 

These formulae have recently been derived by Berry (1985b) for the case of classically 
chaotic systems, using not random-matrix theory but an asymptotic representation of 
the spectrum in terms of the set of closed classical trajectories; in this semiclassical 
theory, the difference between GOE and G U E  arises from the fact that with T each 
closed orbit combines coherently with its time-reversed counterpart, whereas without 
T this does not occur-a fact we will fully exploit later. The semiclassical theory also 
predicts that at a certain value L,,,, A( L )  will deviate from the universal random-matrix 
asymptotic formula (4) and will display non-universal behaviour determined by the 
shortest classical closed orbits; for L >> L,,,, A(L) will reach a (non-universal) satur- 
ation value. 

The system we shall study is a particle with charge q and mass m confined by hard 
walls to a planar domain D (‘billiard table’) threaded by a single line of magnetic flux 
@. If the flux line is at the origin of the plane r = (x, y ) ,  the vector potentiaLA( r )  can 
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be chosen as any vector field satisfying 

V , A ( r )  = n*CP6(r) 

(where n* is a unit vector normal to D )  and energy levels are determined by Schrodinger’s 
equation 

( 1 / 2 m ) ( - i h V - q A ( r ) ) L r L ( r )  = ErL(r) ( 6 )  

where $( r )  is single-valued and i,b = 0 on aD. 
This situation is the bound-state analogue of scattering from a single flux line, first 

calculated by Aharonov and Bohm (1959) and later studied extensively (see, e.g., 
Morandi and Menossi (1984) and the review by Olariu and Popescu (1985)). As in 
the scattering problem, the fact that the magnetic field is zero except at r = O  means 
that the geometry of classical trajectories is unaffected by the flux CP (except for the 
set of measure zero of paths which pass through r = 0), whilst the fact that the vector 
potential A ( r )  cannot be set equal to zero in ( 6 )  means that quantum mechanics, and  
in particular the energy levels, are altered when @ is non-zero. Switching on CP therefore 
means switching off T without changing the geometry of classical trajectories, and if 
the boundary aD is chosen without symmetry and such that these trajectories are 
chaotic, we predict an  abrupt transition of spectral statistics from GOE (when CP = 0) 
to CUE (when @ # 0). 

In $ 2  we show that the quantum spectrum depends on CP via the quantumflux 
parameter 

cr=q@/h ( 6 a )  

and show how the dependence has a semiclassical origin in spite of the fact that the 
geometry of trajectories is unaffected by CP. This semiclassical picture is used in § 3 
to study the softening of the GOE-CUE transition when only a finite number of levels 
is included in the computation of spectral statistics. 

Section 4 is devoted to an  exposition of the technique we use to solve equation ( 6 )  
and so determine the energy levels. This is an  adaptation of the method of conformal 
transformation introduced by Robnik (1983, 1984) to study classical and  quantum 
billiards without flux. The method easily suggests a natural class of boundaries without 
symmetry. In 0 5 ,  one member of this class is chosen and  the results of computations 
of P ( S )  and A( L )  for several values of a are presented, confirming the prediction that 
T-breaking changes the spectral statistics from GOE to CUE. 

An obvious alternative to Aharonov-Bohm billiards as a class of model systems 
for studying T-breaking is billiards with uniform magnetic field, but this has two 
disadvantages. Firstly, it changes the classical trajectories from sequences of straight 
line segments to circles and  sequences of circular arcs; this gives rise to interesting 
new dynamics (Robnik and Berry 1985) but complicates the study of T-breaking 
itself. Secondly, it makes the quantum levels harder to calculate (however, we are 
pursuing these calculations because they reveal interesting phenomena not directly 
connected with time reversal). 

2. Quantal and classical reversibility 

Violation of T for the Aharonov-Bohm billiard is reflected in the fact that the 
Hamiltonian operator in (6) is complex (the term linear in A has a factor i). A 
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gauge-invariant expression of this complex Hermiticity can be obtained by formally 
eliminating the vector potential using the Dirac substitution 

$ ( r ) = x ( r )  exp(;[;A(r') -dr ' )  (7) 

where r, is an arbitrary reference point. This transformation is however multivalued 
because, for any circuit C, 

fc A d r = Wc @ 

where Wc is the winding number of C about the flux line. Therefore, in order that 
$ be single valued, x must acquire a phase factor 

for each positive circuit of the flux line. Schrodinger's equation ( 6 )  now becomes, 
using polar coordinates ( r ,  0 )  for r, 

(-fi2/2m)v2x(r, e) =Ex(r ,  6) 

x( r, 8 + 27r) = exp(-2aia)x( r, e)  (10) 

It is clear from (10) that the quantum mechanics of this system can be made to 
depend on the solution of a real equation with a real boundary condition, but with a 
continuation condition which is in general complex, so that the operator is complex 
Hermitian, leading to the prediction of GUE spectral statistics. However, there are two 
exceptional cases for which the operator (10) is wholly real, leading us to predict GOE 

statistics. The first is when a is an integer (x unchanged in a circuit of the flux line). 
The second is when LY is a half-integer (x changes sign during a circuit of the flux 
line). This latter case is an example of 'false T-breaking' leading to GOE statistics 
when G U E  might have been expected, because a non-trivial real representation of the 
Hamiltonian can be found (in this case (10)); this phenomenon can also arise from 
geometric symmetry (of aD, for example), giving rise to an anti-unitary symmetry 
different from T, as we explain in detail elsewhere (Robnik and Berry 1985). (Half- 
integer flux also plays a special role in  the ordinary Aharonov-Bohm effect, as discussed 
in detail by Berry et a1 (1980).) 

The following symmetries of the spectrum {,!?,(a)} follow trivially from (10): 

x=O on aD. 

E , ( a + l ) = E , ( a )  E,(-a) = E,(LY). (11) 
Therefore, the Aharonov-Bohm quantum billiard spectrum need only be studied on 
the range 0 s  a s 112. 

Now we give the semiclassical interpretation of the dependence on a. At first this 
appears impossible, because the geometry of the classical trajectories is unaffected by 
the flux. However, quantum theory depends not on the Newtonian trajectories in 
configuration space but on the Hamiltonian orbits in phase space. These orbits involve 
the canonical momentum p ,  which differs from the kinetic momentum mu by qA( r)-a 
term which cannot be transformed away because A must satisfy the flux condition (5) 
and so cannot be made to vanish. 

In particular, as emphasised by Gutzwiller (1978) and Balian and Bloch (1974), 
the quantal spectrum depends on the actions of classical closed orbits. The action of 
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a closed orbit, in units of h (that is, the semiclassical phase), is 

=~+2TrwCT. 
h 

where So is the action for zero flux and W the winding number of the orbit about the 
flux line. That fact that this CT dependence of the action is directly connected with 
time reversal is indicated by the existence of a non-zero phase difference between a 
closed orbit (+ , with winding number W) and its time-reversed counterpart ( - , with 
winding number - W), namely 

(13) (S, - S-) /  h = 47r wa. 
W is, of course, an integer, so there is phase coherence between an orbit and its 
time-reversed counterpart whenever a is an integer or a half-integer, a conclusion fully 
concordant with our earlier quantal arguments based on (10). For other values of a, 
there will be a degree of phase incoherence between an orbit and its time-reversed 
counterpart, whose quantitative estimation is the subject of the next section. 

3. Switching off time-reversal symmetry 

The level density d (  E), whose singularities are the eigenvalues Ej, can be expressed 
as a semiclassical sum in which each classical closed orbit, with action S, contributes 
a term containing the phase factor exp(iS/h). Important spectral statistics can be 
expressed as averages of quadratic functionals of d (  E); these include the rigidity A(L), 
and the pair correlation of the levels (Mehta 1967) whose short-range behaviour is the 
same as that of P ( S )  and which therefore manifests the linear or quadratic level 
repulsion of GOE or CUE. For such statistics, the effect on the spectrum of the T 
breaking induced by the flux depends on the average of 

Jexp(iS+/ h )  + exp(iS-/h)l* (14) 

over all relevant pairs of orbits ( + )  and their time-reversed counterparts ( - ) ,  
It is natural now to define a coeficient of T breaking by 

K (a) E (2 cos2[ ( S +  - S-)/2h] - 1) = ( c o s ( 4 ~  WCT)),  (15 )  

where use has been made of (13). The average ( ) is over the winding numbers of all 
the closed orbits which are involved in determining the levels. Complete phase 
coherence gives K = 1 and GOE statistics; complete phase incoherence gives K = 0 and 
GUE statistics. We now estimate K ( a )  for spectral statistics computed using the first 
N levels (the semiclassical limit is N + CO). 

The energy E of the Nth level is approximately given by the Weyl rule (for example, 
see Berry 1983) 

N = dmE/27rh2 (16) 
where d is the area of the billiard. Therefore the spacing between neighbouring levels 
is 

A E = ( d  (E))-' = 27rh2/ md. (17) 



654 M V Berry and M Robnik 

A closed orbit of period T contributes spectral structure on an energy scale h/T, 
therefore the spectrum is approximately determined by those orbits giving structure 
on AE,  that is, those with periods 

T = h l  A E  = m&/ h. (18) 

The geometrical length 1 = UT of these orbits is obtained by combining this result with 
(16), giving 

1 = 2( 4TNd)1’2. (19) 

Because N is large, these are long orbits, consisting of n ( N )  chords connected by 
specular reflection at aD, where n (N)  is obtained by dividing 1 by the mean chord 
length T&/Y, where Y is the length of the boundary (Joyce 1975). Thus 

n(N) = ~ Y ( N / T & ) ” ~ .  (20) 

To calculate the coefficient of T breaking (15) we require the distribution of winding 
numbers W over the large number of closed n-chord orbits. In the appendix we show 
that this distribution is a discrete Gaussian with a variance which depends on the 
position of the flux line, but whose average W’(n) is given approximately by 

W’(n) = ( 1 - 6 9 n / Y ) ( & / 2 ~ ) ’ / ~ .  (21) 

Evaluating the average in (15) using the Poisson summation formula and the fact that 
W2(n)> 1, we obtain the coefficient of T breaking for flux a and N levels as 

~ ( a ;  N )  = f e x p [ - g r 2 ~ 2 ( n ( N ) ) ( a  - m/2)21. (22) 
m=-m 

Use of (20), (21) and restriction to a < 1/4 gives, for large N, 

K ( a  ; N) = exp( -60.1 a 2 N 1 / * ) .  (23) 

Note that in this approximation no details of billiard geometry appear. 
To get GUE spectral statistics, K must be small. This requires 

a >>0.13N-’/4. (24) 
In the semiclassical limit of infinite N, this implies that the transition from GUE to 
GOE takes place abruptly as soon as the flux is non-zero, as previously asserted. Pandey. 
(1981) and Mehta and Pandey (19831, working within the framework of random-matrix 
theory, have given an analogous treatment of the way in which a symmetry-breaking 
perturbation produces a transition between different universality classes of spectral 
fluctuation, which is abrupt in the limit of infinite matrices. 

4. The conformal transformation technique 

Any boundary aD of a simply-connected domain D can be regarded as a conformal 
transformation of the unit circle. If the circle lies in the complex plane z = x + iy, any 
non-singular complex function 

w(z>  = Y )  +iu(x, Y )  ( 2 5 )  
with non-vanishing derivative in D produces, as the boundary of the conformal image 
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of the unit disc, the simple closed curve given parametrically by 

U = R e  w(exp(if3)) U = Im w(exp(i0)) 

(see figure 1). 

Y V 

U 

Figure 1. Conformal transformation from the unit disc in z = x + iy to the billiard domain 
in w = U +io. The boundary shown is generated by the mapping function (40) with 
parameters (41). 

We begin the transformation of Schrodinger’s equation ( 6 )  (whose domain D now 
resides in the uu plane) by choosing a non-divergent gauge in which the lines of the 
vector potential A are the contours of a scalar functionf(u, U). Using ( 5 )  we therefore 
write 

A(u ,  V )  = ( @ / 2 ~ ) ( a f / a v ,  -af/au, 0 )  

vtJ= -2 ?TS( u ) S (  U). 

(27) 

( 2 8 )  

where 

Thus, for the wavefunction +(U, U), (6)  becomes 

with .+ = 0 on dD and where 

k =  (2mE)”’fh. (30) 

Changing to the disc coordinates r = ( x ,  y )  is a straightforward procedure based 
on ( 2 5 ) .  Defining 

we obtain 

* = O  if x’+y2 = 1, (32) 
in which the last term (involving w ’ ( z ) )  encodes all information about the shape of aD. 

Next, we choose 

F (  r )  = -In Irl (33) 
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0 1 2 3 
5 

Figure 2. 

so that 

f ( u ,  v )  = -fin ( x 2 ( u ,  ~ ) + Y ( u ,  U)), (34) 

a function which satisfies the flux condition (28). (This gauge has the property that 
the lines of A are tangential to do.) Thus (32) becomes the final form of the Schrodinger 
equation, namely (using polar coordinates r = ( r ,  e)) 

~ ( i ,  e) = 0. (35)  
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0.s t  I 

i _ _ _ - - - -  
- * - - - -  

- + + + +  + +  * - -  

I+ 
E h  J 
0 10 20 

L 

Figure 2. Spectral statistics for quantum billiard with boundary generated by (26 ) ,  (40) 
and (41) and shown in figure 1 ,  with zero magnetic flux a, for which there is time-reversal 
symmetry. (a )  Level spacings distribution P(S); ( b )  cumulative level spacings distribution 
1: dx P(S); ( c )  spectral rigidity A( L). The full, broken and dotted curves give the predictions 
of the GUE, GOE and Poisson statistics respectively. 

To solve this equation, we expand in terms of eigenstates of the unit disc plus 
central flux line. Thus 

where cnI are expansion coefficients, aril is the nth zero of the Bessel function J I I -a i  
and Nnl are normalisation constants given by 

Substitution of (36) into (35)  leads to 

2 C n ' I ' M n ' l ' n l  = C n I I  k 2 ,  
n' l '  

where 

Solution of the Aharonov-Bohm quantum billiard problem can therefore be accom- 
plished by diagonalising the matrix Mn.r,nl. It is remarkable that the only effect o f  the 
flux line is to change the order of the Bessel functions from integer to fractional; apart 
fromthis, the technique is the same as that devised by Robnik (1984) to determine 
the levels of quantum billiards without flux. 
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0 1 
5 

Figure 3. 

5. Numerical illustrations and discussion 

In choosing a complex function w ( z )  to ge ate a billia d b  U dary vi (26 ) ,  three 
considerations are important. Firstly, computation of the matrix elements (39) must 
be made as easy as possible. This can be achieved by choosing w3( z )  to be a low-order 
polynomial, because this makes the 6 integration trivial (and moreover the matrix is 
almost diagonal in I ) .  Secondly, in order to avoid false T breaking and so generate 
GOE instead of GUE,  aD should not possess reflection symmetry (Robnik and Berry 
1985). Thirdly, a D should generate classically chaotic motion. These conditions can 
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1 

Figure 3. As figure 2, with (I =f(& 1) (the golden flux, equivalent to (I =0.382), for 
which time-reversal symmetry is broken. 

be satisfied by a cubic polynomial, whose most general form can be reduced by 
translation, rotation and scaling to 

W ( Z ) = Z + B Z ~ + C  exp(id)z3, (40) 

in which B, C and 4 are all real and (to avoid symmetry) non-zero. 
After some numerical investigation we selected the following parameters: 

B = C = 0.2, 4 = ~ 1 3 .  (41 ) 

The boundary all generated by this choice is shown in figure 1; its area and perimeter 
are 

.d = 3.7699, 3 = 7.1012. (42) 

The classical trajectories are chaotic. This follows from two facts. Firstly, all is 
not convex and its concave portions are powerful sources of instability, as demonstrated 
by Robnik (1983). Secondly, the shortest closed orbits (each with two bounces, 
involving diameters of all), whose neighbourhoods dominate a large fraction of the 
phase space, are all unstable. Computation of the bounce map for lo5 iterations 
confirms the expectation that the classical orbits are irregular; numerical evidence is 
consistent with ergodicity and shows no trace of tiny islands of regularity amidst the 
chaos (although of course we cannot exclude this possibility). 

By diagonalising the matrix (39), the spectrum was computed for several values of 
a, with Bessel functions calculated by recursion and matrix elements evaluated by 
numerical radial integration. For each a, 500 levels were computed, and of these the 
lowest 125 were used to calculate spectral statistics; we are confident that numerical 
errors do not exceed 5% of the mean level spacing. Of course with N = 125 we do 
not expect exact agreement with random-matrix theory-for that, we would need the 
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8 
Figure 4. 

semiclassical limit N -+ 03. For each spectrum, the staircase N ( E )  was checked for 
gross errors by comparing it with the Weyl rule plus corrections (Baltes and Hilf 1976). 

The first set of statistics (figure 2 )  is for the case of zero flux (a =O). Figure 2 ( a )  
shows the level spacings distribution presented in the customary way as a histogram 
obtained by dividing the data into bins. The data appear to favour GOE statistics, as 
expected for this quantum billiard with T as its only symmetry. However, it is much 
better to present the data cumulatively, as ~ ~ d x P ( x ) ,  because this avoids both the 
large statistical fluctuations with small bins and the smoothing of data with large bins; 
figure 2 ( b )  shows the result. Evidently GOE statistics give a better fit for small S, 
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c -- 
0 10 20 

1 

Figure 4. As figure 2, with a = $, for which time-reversal symmetry is broken. 

indicating linear level repulsion (the deviations from the GOE curves are within the 
ranges expected for N = 125). 

Figure 2( c) shows the rigidity A( L )  for this case of zero flux computed by spectral 
averaging of ( 2 )  over 125/L non-overlapping level sequences. The data lie close to 
the GOE curve until L -  15 and then rise more slowly. The GOE behaviour for L c  15 
agrees with earlier studies (Bohigas and Giannoni 1984, Bohigas et a1 1984) which 
were restricted to approximately the same range of values. Semiclassical theory (Berry 
1985b) predicts that A ( L )  may deviate from GOE when L reaches a value for which a 
rough estimate is 

L a x  = h ( d ) /  Tmin (43 1 
where Tmin is the period of the shortest classical closed orbit. The behaviour of A( L )  
for L -  L,,, is non-universal and determined by the particular detailed structure of 
the shortest few closed orbits. We calculate L,,, using the Weyl rule for ( d ) ,  with the 
result (the same with and without flux) 

L,,, = 2( T & N ) ” ~ /  lmin, (44) 

where lmin is the length of the shortest closed orbit (twice the shortest diameter). For 
our billiard, with N = 125, L,,, = 20-a reasonable agreement considering the rough- 
ness of the estimates. 

Figure 3 shows the effect of T breaking, with a chosen as the golden number to 
make the quantum flux maximally irrational. Thus a =;(A - I ) ,  which is equivalent 
to 1 - a = 0.382. For this value, the condition (24) for GUE statistics is amply satisfied: 
the coefficient of T breaking (23) is K - exp( -9). The effect is striking; in figures 3(a) 
and 3 ( b ) ,  P ( S )  and its integral now agree with GUE predictions over the whole range 
of spacings and in particular the level repulsion as S + 0 is approximately quadratic. 
As figure 3 ( c )  shows, the data cling to the GUE curve over the whole range 0~ L s  20. 
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r 

Figure 5. 

For (Y = j ( h - 2 )  =0.118, the spectral statistics (not shown here) also agree well 
with GUE in the expected range. However, beyond L - 15, A( L )  does not agree with 
the GUE curve as in figure 3( c) but rises more slowly (cf analogous behaviour for (Y = 0 
in figure 2(c)). 

Figure 4 shows the spectral statistics for (Y = a ,  chosen because it is furthest from 
the extremes a = O  and a =; (for which the Hamiltonian is real) and therefore ought 
to exhibit the effects of T breaking most strongly. The results confirm this expectation: 
the level spacings (figures 4 ( a )  and 4(b))  again agree with GUE, although with larger 
fluctuations than for the golden flux. The rigidity (figure 4 ( c ) )  again agrees with GUE 
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20 10 
1 

0 

Figure 5. As figure 2, with a = 4, for which there is false time-reversal symmetry-breaking. 

for small L, but then rises more slowly (cf analogous behaviour for a = 0 in figure 
2( c)). This stronger-than-GuE long-range level correlation might arise from the fact 
that when a = the quantity c o s ( 4 ~ W a ) ,  whose average is the coefficient of T breaking 
( 1 5 ) ,  can take only the values *l (depending on whether the winding number is even 
or odd). 

A central prediction of 0 2 was that a =+ is a special value which corresponds to 
false T breaking and so should have GOE spectral statistics. Figure 5 confirms that 
this is the case over the whole plotted range of S and all the expected range of L. 

To show the effect of symmetry-breaking beyond any doubt, we show in figures 
6 ( 0 )  and 6 ( b )  the spacings statistics for the combined data for the two cases with real 
Hamiltonian ( a  = 0 and a = $) and in figures 6( c)  and 6 d ) ,  the corresponding stgtistics 

The foregoing computations concern the billiard (41)  which has no symmetry. In 
cases where aD has reflection symmetry, we can show (Robnik and Berry 1985) that 
even though the flux line destroys T in quantum (and Hamiltonian) mechanics, it is 
nevertheless possible to find a non-trivial basis in which the Hamiltonian operator is 
real, so that GOE and not CUE statistics are predicted for non-zero flux if the classical 
motion is chaotic. This case of false T breaking was confirmed by computations (not 
shown here) with the golden a for the heart-shaped billiard with B=0.4  and C =0,  
previously studied with zero flux classically and quantally by Robnik (1983, 1984). 

We summarise our conclusions as follows. Breaking the time-reversal symmetry 
of a quantal system whose corresponding classical motion is, and continues to be, 
chaotic causes the local spectral fluctuations to change their universality class from 
that of the Gaussian orthogonal ensemble of random-matrix theory to that of the 
Gaussian unitary ensemble. This has been illustrated in the simplest possible way by 
the Aharonov-Bohm quantum billiard, for which switching on the flux breaks quantum 
mechanical time-reversal symmetry whilst preserving the geometry of classical trajec- 
tories. 

for the three cases with complex Hamiltonian ( a  = ;( J- 5 - l ) ,  a = a  and a = g(d5 - 2 ) ) .  
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Figure 6. ( a )  Level spacings distribution combining data from n = O  (figure 2 ( a ) )  and 
n =$ (figure 5 ( a ) ) ;  ( b )  cumulative level spacings distribution dxP(x)  combining data 
from n = 0 (figure 2(b)) and (I = $ (figure 5(b)); ( c )  level spacings distribution combining 
data from n = f  ( & - I )  (figure 3(a)), n =: (figure4(a)), and a =$(&-2);  ( d )  cumulative 
level spacings dispibution combining data from (I = f ( g ' 5 -  1) (figure 3(b)), (I = a  (figure 
4(b)) and a =$(JS -2). ( a )  and ( b )  show clear GOE behaviour (broken curves) whilst ( c )  
and ( d )  show clear GUE behaviour (full curves). 
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Appendix. Statistics of winding numbers of long closed orbits? 

For any particular n-step closed orbit the winding number will be an integer-valued 
function of position, W (  r ) ,  which changes by * 1  whenever the flux line r crosses the 
orbit and which vanishes on the boundary aD. As n + 00 the orbits tend to cover D 
densely and so in any small displacement R the number of crossings will be constant 
and equal to 2 n l R l / 2  (as can be seen by choosing R close to the boundary and parallel 
to it and realising that each of the n chords meets the boundary twice). Because the 
increments of W are randomly *1 for large n, the mean square increment of W in a 
displacement R (averaged over all n-step orbits) equals the number of crossings, i.e. 

([ W ( r + R )  - ~ ( r ) ] ’ )  = 2 n l ~ l / 2 .  ( A l l  

Therefore W (  r )  is a Brown plane-to-line function (Mandelbrot 1982) and so has a 
Gaussian distribution, whose variance ( W z (  r ) )  we seek to estimate. We begin by noting 
that W ( r )  can be represented by an expansion in terms of any convenient complete 
set of functions; it is natural to choose the eigenfunctions of the Laplacian in D. Thus 
we can write 

where 

V’Gj+ k;+] = 0 in D, (c; = 0 on aD, (A31 

and the a, are independent random variables with zero mean and, for large j ,  a common 
variance (a ; )  which, along with the index p, is to be determined by requiring the 
statistics of W ( r )  to conform to ( A l ) .  

Thus 

Here we have carried out not only an ensemble average over the aj but also a local 
space average near r and r + R. For the eigenfunctions of classically ergodic systems 
these averages (mean square probability density and spatial autocorrelation function) 
were worked out by Berry (1977),  and give 

Now lRI is small and each individual term vanishes as [RI2, so that the value of the 

t Based on an idea of Dr J H Hannay. 
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sum is determined by its high terms and can therefore be replaced by an integral, using 
the Weyl rule 

;+ I dk kd127r. 

Thus ( A 5 )  becomes 

By scaling 

From 

k to bring IRI outside the integral we identify p =; and 

2n7r ( loE $ 1 - Jo( x)  1) = - 2 2 .  

A2) the variance of winding number now becomes 

- 1  

(a:) = 

The average value of ( W2(r)) over 0, which we now denote by W',, is found from 
( A 9 )  by using the normalisation of the $ j :  

This expression involves the zeta function of the eigenvalues k,. An approximation 
adequate for the estimates of § 3 is obtained by a slight refinement of the Weyl rule, 
namely 

j - = d k f / h  ( A l l )  

which gives 

Evaluating the Riemann zeta function, we obtain equation ( 2 1 )  of § 3 .  

References 

Aharonov Y and Bohm D 1959 Phys. Rev. 115 485-91 
Balian R and Bloch C 1974 Ann. Phys., NY 85 214-45 
Baltes H P and Hilf E R 1976 Spectra of jni te  systems (Mannheim: B-I Wissenschaftsverlag) 
Berry M V 1977 J. Phys. A: Math. Gen. 10 2083-91 
- 1983 Chaotic Behavior of Deterministic Sysfems ed G Iooss, R H G Helleman and R Stora (Amsterdam: 

North-Holland) pp 171-271 
- 1985a Proc. R. Soc. A 400 299-51 
- 1985b Proc. Como Conf: on Quantum Chaos ed G Casati (London: Plenum) pp 123-40 
Berry M V, Chambers R G, Large M D, Upstill C and Walmsley J C 1980 Eur. J. Phys. 1 154-62 



668 M V Berry and M Robnik 

Bohigas 0 and Giannoni M J 1984 Mathematical and Computational Methods in Nuclear Physics ed J S 

Bohigas 0, Giannoni M J and Schmit C 1984 Phys. Rev. Lett. 52 1-4 
Dyson F J and Mehta M L 1963 1. Math. Phys. 4 701-12 
Gutzwiller M C 1978 Path Integrals and their Applications in Quantum, Statistical and Solid-State Physics ed 

Izraelev F M 1984 Preprint, 84-63 Novosibirsk 
Joyce W B 1975 1. Acoust. Soc. Am. Ss 643-55 
Mandelbrot B B 1982 The Fractal Geometry of Nature (San Francisco: Freeman) 
Mehta M L 1967 Random Matrices and the Statistical Theory of Energy Levels (New York: Academic) 
Mehta M L and Pandey A 1983 1. Phys. A :  Math. Gen. 16 2655-84 
Morandi G and Menossi E 1984 Eur. J. Phvs. S 49-58 
OIariu S and Popescu I 1985 Rev. Mod. Phys. 57 339-436 
Pandey A 1981 Ann. Phys., N Y  134 110-27 
Porter C E 1965 Sratistical nteories of Spectra: Fluctuations (New York: Academic) 
Robnik M 1983 J. Phys. A :  Math. Gen. 16 3971-86 
- 1984 J. Phys. A :  Math. Gen. 17 1049-74 
Robnik M and Berry M V 1985 1. Phys. A :  Math. Gen. 18 1361-78 
Seligman T H and Verbaarschot J J M 1985 Phys. Lett. 108A 183-7 

Dehesa, J M G Gomez and A Polls (Lectures Notes in Physics 209) (New York: Springer) pp 1-99 

G J Papadoulos and J T Devreese (New York: Plenum) pp 163-200 


